Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
2.
Front Oncol ; 12: 963896, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36439487

RESUMO

Background: The interactions between tumor cells and the host immune system play a crucial role in lung cancer progression and resistance to treatment. The alterations of EGFR signaling have the potential to produce an ineffective tumor-associated immune microenvironment by upregulating a series of immune suppressors, including inhibitory immune checkpoints, immunosuppressive cells, and cytokines. Elevated Heparin-binding EGF-like growth factor (HB-EGF) expression, one EGFR ligand correlated with higher histology grading, worse patient prognosis, and lower overall survival rate, acts as a chemotactic factor. However, the role of heparin-binding epidermal growth factor-like growth factor (HB-EGF) in the accumulation of immune cells in the tumor microenvironment remains unclear. Methods: The clinical association of HB-EGF expression in lung cancer was examined using the Gene Expression Omnibus (GEO) repository. HB-EGF expression in different cell types was determined using single-cell RNA sequencing (scRNA-seq) dataset. The correlation between HB-EGF expression and cancer-immune infiltrated cells was investigated by performing TIMER and ClueGo pathways analysis from TCGA database. The chemotaxis of HB-EGF and macrophage infiltration was investigated using migration and immunohistochemical staining. Results: The high HB-EGF expression was significantly correlated with poor overall survival in patients with lung adenocarcinoma (LUAD) but not lung squamous cell carcinoma (LUSC). Moreover, HB-EGF expression was correlated with the infiltration of monocytes, macrophages, neutrophils, and dendritic cells in LUAD but not in LUSC. Analysis of scRNA-seq data revealed high HB-EGF expression in lung cancer cells and myeloid cells. Results from the pathway analysis and cell-based experiment indicated that elevated HB-EGF expression was associated with the presence of macrophage and lung cancer cell migration. HB-EGF was highly expressed in tumors and correlated with M2 macrophage infiltration in LUAD. Conclusions: HB-EGF is a potential prognostic marker and therapeutic target for lung cancer progression, particularly in LUAD.

3.
PLoS One ; 17(9): e0275182, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36170295

RESUMO

Dysregulation of dopaminergic transmission induced by the HIV-1 transactivator of transcription (Tat) has been implicated as a central factor in the development of HIV-1 associated neurocognitive disorders (HAND). We have demonstrated that the tyrosine470 residue of the human dopamine transporter (hDAT) plays a critical role in Tat-hDAT interaction. Based on the computational modeling predictions, the present study sought to examine the mutational effects of the tyrosine467 residue of the human norepinephrine transporter (hNET), a corresponding residue of the hDAT tyrosine470, on Tat-induced inhibition of reuptake of dopamine through the hNET. Mutations of the hNET tyrosine467 to a histidine (Y467H) or a phenylalanine (Y467F) displayed similar kinetic properties of reuptake of [3H]dopamine and [3H]norepinephrine in PC12 cells expressing wild-type hNET and its mutants. Compared to wild-type hNET, neither of Y467H or Y467F altered Bmax and Kd values of [3H]WIN35,428 binding, whereas Y467H but not Y467F decreased the Bmax of [3H]nisoxetine binding without changes in Kd. Y467H also increased the affinity of nisoxetine for inhibiting [3H]dopamine uptake relative to wild-type hNET. Recombinant Tat1-86 (140 nM) induced a significant reduction of [3H]dopamine uptake in wild-type hNET, which was attenuated in both Y467H and Y467F. Compared to wild-type hNET, neither Y467H or Y467F altered [3H]dopamine efflux in CHO cells expressing WT hNET and mutants, whereas Y467F but not Y467H decreased [3H]MPP+ efflux. These results demonstrate tyrosine467 as a functional recognition residue in the hNET for Tat-induced inhibition of dopamine transport and provide a novel insight into the molecular basis for developing selective compounds that target Tat-NET interactions in the context of HAND.


Assuntos
HIV-1 , Simportadores , Animais , Cricetinae , Cricetulus , Dopamina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Fluoxetina/análogos & derivados , HIV-1/genética , HIV-1/metabolismo , Histidina/metabolismo , Humanos , Mutação , Norepinefrina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/genética , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/metabolismo , Fenilalanina/metabolismo , Ratos , Simportadores/metabolismo , Transativadores/genética , Tirosina/metabolismo
4.
Respir Res ; 23(1): 77, 2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35361214

RESUMO

BACKGROUND: There is a link between exposure to air pollution and the increased prevalence of chronic obstructive pulmonary disease (COPD) and declining pulmonary function, but the association with O2 desaturation during exercise in COPD patients with emphysema is unclear. Our aims were to estimate the prevalence of O2 desaturation during exercise in patients with COPD, and determine the association of exposure to air pollution with exercise-induced desaturation (EID), the degree of emphysema, and dynamic hyperinflation (DH). METHODS: We assessed the effects of 10-year prior to the HRCT assessment and 7 days prior to the six-minute walking test exposure to particulate matter with an aerodynamic diameter of < 10 µm (PM10) or of < 2.5 µM (PM2.5), nitrogen dioxide (NO2), and ozone (O3) in patients with emphysema in this retrospective cohort study. EID was defined as a nadir standard pulse oximetry (SpO2) level of < 90% or a delta (△)SpO2 level of ≥ 4%. Ambient air pollutant (PM2.5, PM10, O3, and NO2) data were obtained from Taiwan Environmental Protection Administration (EPA) air-monitoring stations, usually within 10 km to each participant's home address. RESULTS: We recruited 141 subjects with emphysema. 41.1% of patients with emphysema exhibited EID, and patients with EID had more dyspnea, worse lung function, more severe emphysema, more frequent acute exacerbations, managed a shorter walking distance, had DH, and greater long-term exposure to air pollution than those without EID. We observed that levels of 10-year concentrations of PM10, PM2.5, and NO2 were significantly associated with EID, PM10 and PM2.5 were associated with the severity of emphysema, and associated with DH in patients with emphysema. In contrast, short-term exposure did not have any effect on patients. CONCLUSION: Long-term exposure to ambient PM10, PM2.5 and NO2, but not O3, was associated with EID.


Assuntos
Poluição do Ar , Ozônio , Doença Pulmonar Obstrutiva Crônica , Poluição do Ar/efeitos adversos , Exercício Físico , Humanos , Ozônio/efeitos adversos , Doença Pulmonar Obstrutiva Crônica/induzido quimicamente , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/epidemiologia , Estudos Retrospectivos
5.
Biomedicines ; 10(4)2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35453536

RESUMO

Despite rapidly evolving pathobiological mechanistic demystification, coupled with advances in diagnostic and therapeutic modalities, chronic obstructive pulmonary disease (COPD) remains a major healthcare and clinical challenge, globally. Further compounded by the dearth of available curative anti-COPD therapy, it is posited that this challenge may not be dissociated from the current lack of actionable COPD pathognomonic molecular biomarkers. There is accruing evidence of the involvement of protracted 'smoldering' inflammation, repeated lung injury, and accelerated lung aging in enhanced predisposition to or progression of COPD. The relatively novel uncharacterized human long noncoding RNA lnc-IL7R (otherwise called LOC100506406) is increasingly designated a negative modulator of inflammation and regulator of cellular stress responses; however, its role in pulmonary physiology and COPD pathogenesis remains largely unclear and underexplored. Our previous work suggested that upregulated lnc-IL7R expression attenuates inflammation following the activation of the toll-like receptor (TLR)-dependent innate immune system, and that the upregulated lnc-IL7R is anti-correlated with concomitant high PM2.5, PM10, and SO2 levels, which is pathognomonic for exacerbated/aggravated COPD in Taiwan. In the present study, our quantitative analysis of lnc-IL7R expression in our COPD cohort (n = 125) showed that the lnc-IL7R level was significantly correlated with physiological pulmonary function and exhibited COPD-based stratification implications (area under the curve, AUC = 0.86, p < 0.001). We found that the lnc-IL7R level correctly identified patients with COPD (sensitivity = 0.83, specificity = 0.83), precisely discriminated those without emphysematous phenotype (sensitivity = 0.48, specificity = 0.89), and its differential expression reflected disease course based on its correlation with the COPD GOLD stage (r = −0.59, p < 0.001), %LAA-950insp (r = −0.30, p = 0.002), total LAA (r = −0.35, p < 0.001), FEV1(%) (r = 0.52, p < 0.001), FVC (%) (r = 0.45, p < 0.001), and post-bronchodilator FEV1/FVC (r = 0.41, p < 0.001). Consistent with other data, our bioinformatics-aided dose−response plot showed that the probability of COPD decreased as lnc-IL7R expression increased, thus, corroborating our posited anti-COPD therapeutic potential of lnc-IL7R. In conclusion, reduced lnc-IL7R expression not only is associated with inflammation in the airway epithelial cells but is indicative of impaired pulmonary function, pathognomonic of COPD, and predictive of an exacerbated/ aggravated COPD phenotype. These data provide new mechanistic insights into the ailing lung and COPD progression, as well as suggest a novel actionable molecular factor that may be exploited as an efficacious therapeutic strategy in patients with COPD.

6.
Cell Biol Toxicol ; 38(6): 1097-1120, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35303175

RESUMO

BACKGROUND: Long-term exposure to PM2.5 (particulate matter with an aerodynamic diameter of ≤ 2.5 µm) is associated with pulmonary injury and emphysema in patients with chronic obstructive pulmonary disease (COPD). We investigated mechanisms through which the long noncoding RNA lnc-IL7R contributes to cellular damage by inducing oxidative stress in COPD patients exposed to PM2.5. METHODS: Associations of serum lnc-IL7R levels with lung function, emphysema, and previous PM2.5 exposure in COPD patients were analyzed. Reactive oxygen species and lnc-IL7R levels were measured in PM2.5-treated cells. The levels of lnc-IL7R and cellular senescence-associated genes, namely p16INK4a and p21CIP1/WAF1, were determined through lung tissue section staining. The effects of p16INK4a or p21CIP1/WAF1 regulation were examined by performing lnc-IL7R overexpression and knockdown assays. The functions of lnc-IL7R-mediated cell proliferation, cell cycle, senescence, colony formation, and apoptosis were examined in cells treated with PM2.5. Chromatin immunoprecipitation assays were conducted to investigate the epigenetic regulation of p21CIP1/WAF1. RESULTS: Lnc-IL7R levels decreased in COPD patients and were negatively correlated with emphysema or PM2.5 exposure. Lnc-IL7R levels were upregulated in normal lung epithelial cells but not in COPD cells exposed to PM2.5. Lower lnc-IL7R expression in PM2.5-treated cells induced p16INK4a and p21CIP1/WAF1 expression by increasing oxidative stress. Higher lnc-IL7R expression protected against cellular senescence and apoptosis, whereas lower lnc-IL7R expression augmented injury in PM2.5-treated cells. Lnc-IL7R and the enhancer of zeste homolog 2 (EZH2) synergistically suppressed p21CIP1/WAF1 expression through epigenetic modulation. CONCLUSION: Lnc-IL7R attenuates PM2.5-mediated p21CIP1/WAF1 expression through EZH2 recruitment, and its dysfunction may augment cellular injury in COPD.


Assuntos
Enfisema , Doença Pulmonar Obstrutiva Crônica , RNA Longo não Codificante , Humanos , Apoptose/genética , Senescência Celular/genética , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Enfisema/genética , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Epigênese Genética , Subunidade alfa de Receptor de Interleucina-7/genética , Subunidade alfa de Receptor de Interleucina-7/metabolismo , Material Particulado/toxicidade , Doença Pulmonar Obstrutiva Crônica/genética , RNA Longo não Codificante/genética
7.
Front Med (Lausanne) ; 9: 1047420, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36687440

RESUMO

Background: Chronic obstructive pulmonary disease (COPD) has high global health concerns, and previous research proposed various indicators to predict mortality, such as the distance-saturation product (DSP), derived from the 6-min walk test (6MWT), and the low-attenuation area percentage (LAA%) in pulmonary computed tomographic images. However, the feasibility of using these indicators to evaluate the stability of COPD still remains to be investigated. Associations of the DSP and LAA% with other COPD-related clinical parameters are also unknown. This study, thus, aimed to explore these associations. Methods: This retrospective study enrolled 111 patients with COPD from northern Taiwan. Individuals' data we collected included results of a pulmonary function test (PFT), 6MWT, life quality survey [i.e., the modified Medical Research Council (mMRC) scale and COPD assessment test (CAT)], history of acute exacerbation of COPD (AECOPD), and LAA%. Next, the DSP was derived by the distance walked and the lowest oxygen saturation recorded during the 6MWT. In addition, the DSP and clinical phenotype grouping based on clinically significant outcomes by previous study approaches were employed for further investigation (i.e., DSP of 290 m%, LAA% of 20%, and AECOPD frequency of ≥1). Mean comparisons and linear and logistic regression models were utilized to explore associations among the assessed variables. Results: The low-DSP group (<290 m%) had significantly higher values for the mMRC, CAT, AECOPD frequency, and LAA% at different lung volume scales (total, right, and left), whereas it had lower values of the PFT and 6MWT parameters compared to the high-DSP group. Significant associations (with high odds ratios) were observed of the mMRC, CAT, AECOPD frequency, and PFT with low- and high-DSP groupings. Next, the risk of having AECOPD was associated with the mMRC, CAT, DSP, and LAA% (for the total, right, and left lungs). Conclusion: A lower value of the DSP was related to a greater worsening of symptoms, more-frequent exacerbations, poorer pulmonary function, and more-severe emphysema (higher LAA%). These readily determined parameters, including the DSP and LAA%, can serve as indicators for assessing the COPD clinical course and may can serve as a guide to corresponding treatments.

8.
Cell Biol Toxicol ; 38(5): 865-887, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-34036453

RESUMO

Exposure to environmental and occupational contaminants leads to lung cancer. 3-Nitrobenzanthrone (3-nitro-7H-benz[de]anthracen-7-one, 3-NBA) is a potential carcinogen in ambient air or diesel particulate matter. Studies have revealed that short-term exposure to 3-NBA induces cell death, reactive oxygen species activation, and DNA adduct formation and damage. However, details of the mechanism by which chronic exposure to 3-NBA influences lung carcinogenesis remain largely unknown. In this study, human lung epithelial BEAS-2B cells were continuously exposed to 0-10-µM 3-NBA for 6 months. NanoString analysis was conducted to evaluate gene expression in the cells, revealing that 3-NBA-mediated transformation results in a distinct gene expression signature including carbon cancer metabolism, metastasis, and angiogenesis. Alterations in tumor-promoting genes such as EREG (epiregulin), SOX9, E-cadherin, TWIST, and IL-6 were involved in epithelial cell aggressiveness. Kaplan-Meier plotter analyses indicated that increased EREG and IL-6 expressions in early-stage lung cancer cells are correlated with poor survival. In vivo xenografts on 3-NBA-transformed cells exhibited prominent tumor formation and metastasis. EREG knockout cells exposed to 3-NBA for a short period exhibited high apoptosis and low colony formation. By contrast, overexpression of EREG in 3-NBA-transformed cells markedly activated the PI3K/AKT and MEK/ERK signaling pathways, resulting in tumorigenicity. Furthermore, elevated IL-6 and EREG expressions synergistically led to STAT3 signaling activation, resulting in clonogenic cell survival and migration. Taken together, chronic exposure of human lung epithelial cells to 3-NBA leads to malignant transformation, in which the EREG signaling pathway plays a pivotal mediating role. • Short-term exposure of lung epithelial cells to 3-NBA can lead to ROS production and cell apoptosis. • Long-term chronic exposure to 3-NBA upregulates the levels of tumor-promoting genes such as EREG and IL-6. • Increased EREG expression in 3-NBA-transformed cells markedly contributes to tumorigenesis through PI3K/AKT and MEK/ERK activation and synergistically enhances the IL-6/STAT3 signaling pathway, which promotes tumorigenicity.


Assuntos
Adutos de DNA , Neoplasias Pulmonares , Benzo(a)Antracenos , Caderinas/metabolismo , Carbono/metabolismo , Carbono/farmacologia , Carcinogênese/metabolismo , Carcinógenos , Transformação Celular Neoplásica/metabolismo , Adutos de DNA/metabolismo , Adutos de DNA/farmacologia , Epirregulina/genética , Epirregulina/metabolismo , Epirregulina/farmacologia , Células Epiteliais/metabolismo , Humanos , Interleucina-6/metabolismo , Pulmão/metabolismo , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/farmacologia , Material Particulado/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
9.
Int J Mol Sci ; 22(23)2021 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-34884633

RESUMO

Aberrant activation of the epidermal growth factor receptor (EGFR/ERBB1) by erythroblastic leukemia viral oncogene homolog (ERBB) ligands contributes to various tumor malignancies, including lung cancer and colorectal cancer (CRC). Epiregulin (EREG) is one of the EGFR ligands and is low expressed in most normal tissues. Elevated EREG in various cancers mainly activates EGFR signaling pathways and promotes cancer progression. Notably, a higher EREG expression level in CRC with wild-type Kirsten rat sarcoma viral oncogene homolog (KRAS) is related to better efficacy of therapeutic treatment. By contrast, the resistance of anti-EGFR therapy in CRC was driven by low EREG expression, aberrant genetic mutation and signal pathway alterations. Additionally, EREG overexpression in non-small cell lung cancer (NSCLC) is anticipated to be a therapeutic target for EGFR-tyrosine kinase inhibitor (EGFR-TKI). However, recent findings indicate that EREG derived from macrophages promotes NSCLC cell resistance to EGFR-TKI treatment. The emerging events of EREG-mediated tumor promotion signals are generated by autocrine and paracrine loops that arise from tumor epithelial cells, fibroblasts, and macrophages in the tumor microenvironment (TME). The TME is a crucial element for the development of various cancer types and drug resistance. The regulation of EREG/EGFR pathways depends on distinct oncogenic driver mutations and cell contexts that allows specific pharmacological targeting alone or combinational treatment for tailored therapy. Novel strategies targeting EREG/EGFR, tumor-associated macrophages, and alternative activation oncoproteins are under development or undergoing clinical trials. In this review, we summarize the clinical outcomes of EREG expression and the interaction of this ligand in the TME. The EREG/EGFR pathway may be a potential target and may be combined with other driver mutation targets to combat specific cancers.


Assuntos
Neoplasias do Colo/metabolismo , Epirregulina/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Epirregulina/genética , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Macrófagos/metabolismo , Terapia de Alvo Molecular , Mutação , Transdução de Sinais , Microambiente Tumoral
10.
Biomedicines ; 9(12)2021 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-34944649

RESUMO

BACKGROUND: Chronic obstructive pulmonary disease (COPD) continues to pose a therapeutic challenge. This may be connected with its nosological heterogeneity, broad symptomatology spectrum, varying disease course, and therapy response. The last three decades has been characterized by increased understanding of the pathobiology of COPD, with associated advances in diagnostic and therapeutic modalities; however, the identification of pathognomonic biomarkers that determine disease severity, affect disease course, predict clinical outcome, and inform therapeutic strategy remains a work in progress. OBJECTIVES: Hypothesizing that a multi-variable model rather than single variable model may be more pathognomonic of COPD emphysema (COPD-E), the present study explored for disease-associated determinants of disease severity, and treatment success in Taiwanese patients with COPD-E. METHODS: The present single-center, prospective, non-randomized study enrolled 125 patients with COPD and 43 healthy subjects between March 2015 and February 2021. Adopting a multimodal approach, including bioinformatics-aided analyses and geospatial modeling, we performed an integrated analysis of selected epigenetic, clinicopathological, geospatial, and air pollutant variables, coupled with correlative analyses of time-phased changes in pulmonary function indices and COPD-E severity. RESULTS: Our COPD cohort consisted of 10 non-, 57 current-, and 58 ex-smokers (median age = 69 ± 7.76 years). Based on the percentages of low attenuation area below - 950 Hounsfield units (%LAA-950insp), 36 had mild or no emphysema (%LAA-950insp < 6), 22 were moderate emphysema cases (6 ≤ %LAA-950insp < 14), and 9 presented with severe emphysema (%LAA-950insp ≥ 14). We found that BMI, lnc-IL7R, PM2.5, PM10, and SO2 were differentially associated with disease severity, and are highly-specific predictors of COPD progression. Per geospatial levels, areas with high BMI and lnc-IL7R but low PM2.5, PM10, and SO2 were associated with fewer and ameliorated COPD cases, while high PM2.5, PM10, and SO2 but low BMI and lnc-IL7R characterized places with more COPD cases and indicated exacerbation. The prediction pentad effectively differentiates patients with mild/no COPD from moderate/severe COPD cases, (mean AUC = 0.714) and exhibited very high stratification precision (mean AUC = 0.939). CONCLUSION: Combined BMI, lnc-IL7R, PM2.5, PM10, and SO2 levels are optimal classifiers for accurate patient stratification and management triage for COPD in Taiwan. Low BMI, and lnc-IL7R, with concomitant high PM2.5, PM10, and SO2 levels is pathognomonic of exacerbated/aggravated COPD in Taiwan.

11.
J Neuroimmune Pharmacol ; 16(4): 854-869, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33537927

RESUMO

HIV-1 transactivator of transcription (Tat) has a great impact on the development of HIV-1 associated neurocognitive disorders through disrupting dopamine transmission. This study determined the mutational effects of human dopamine transporter (hDAT) on basal and Tat-induced inhibition of dopamine transport. Compared to wild-type hDAT, the maximal velocity (Vmax) of [3H]dopamine uptake was decreased in D381L and Y88F/D206L/H547A, increased in D206L/H547A, and unaltered in D206L. Recombinant TatR1 - 86 inhibited dopamine uptake in wild-type hDAT, which was attenuated in either DAT mutants (D206L, D206L/H547A, and Y88F/D206L/H547A) or mutated TatR1 - 86 (K19A and C22G), demonstrating perturbed Tat-DAT interaction. Mutational effects of hDAT on the transporter conformation were evidenced by attenuation of zinc-induced increased [3H]WIN35,428 binding in D206L/H547A and Y88F/D206A/H547A and enhanced basal MPP+ efflux in D206L/H547A. H547A-induced outward-open transport conformational state was further validated by enhanced accessibility to MTSET ([2-(trimethylammonium)ethyl]-methanethiosulfonate) of an inserted cysteine (I159C) on a hDAT background.. Furthermore, H547A displayed an increase in palmitoylation inhibitor-induced inhibition of dopamine uptake relative to wide-type hDAT, indicating a change in basal palmitoylation in H547A. These results demonstrate that Y88F, D206L, and H547A attenuate Tat inhibition while preserving DA uptake, providing insights into identifying targets for improving DAT-mediated dopaminergic dysregulation. HIV-1 Tat inhibits dopamine uptake through human dopamine transporter (hDAT) on the presynaptic terminal through a direct allosteric interaction. Key hDAT residues D-H547, D-Y88, and D-D206 are predicted to be involved in the HIV-1 Tat-DAT binding. Mutating these residues attenuates this inhibitory effect by disrupting the Tat-hDAT interaction.


Assuntos
HIV-1 , Dopamina , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , HIV-1/metabolismo , Humanos , Mutação , Transativadores , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo
12.
Sensors (Basel) ; 19(21)2019 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-31683704

RESUMO

High dynamic range (HDR) has wide applications involving intelligent vision sensing which includes enhanced electronic imaging, smart surveillance, self-driving cars, intelligent medical diagnosis, etc. Exposure fusion is an essential HDR technique which fuses different exposures of the same scene into an HDR-like image. However, determining the appropriate fusion weights is difficult because each differently exposed image only contains a subset of the scene's details. When blending, the problem of local color inconsistency is more challenging; thus, it often requires manual tuning to avoid image artifacts. To address this problem, we present an adaptive coarse-to-fine searching approach to find the optimal fusion weights. In the coarse-tuning stage, fuzzy logic is used to efficiently decide the initial weights. In the fine-tuning stage, the multivariate normal conditional random field model is used to adjust the fuzzy-based initial weights which allows us to consider both intra- and inter-image information in the data. Moreover, a multiscale enhanced fusion scheme is proposed to blend input images when maintaining the details in each scale-level. The proposed fuzzy-based MNCRF (Multivariate Normal Conditional Random Fields) fusion method provided a smoother blending result and a more natural look. Meanwhile, the details in the highlighted and dark regions were preserved simultaneously. The experimental results demonstrated that our work outperformed the state-of-the-art methods not only in several objective quality measures but also in a user study analysis.

13.
Sci Rep ; 9(1): 3843, 2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30846720

RESUMO

Dysregulation of dopaminergic system induced by HIV-1 Tat protein-mediated direct inhibition of the dopamine transporter (DAT) has been implicated as a mediating factor of HIV-1 associated neurocognitive disorders. We have reported that single point mutations on human DAT (hDAT) at tyrosine88 (Y88F), lysine92 (K92M), and histidine547 (H547A) differentially regulate basal dopamine uptake but diminish Tat-induced inhibition of dopamine uptake by changing dopamine transport process. This study evaluated the effects of double (Y88F/H547A) and triple (Y88F/K92M/H547A) mutations on basal dopamine uptake, Tat-induced inhibition of DAT function, and dynamic transport process. Compared to wild-type hDAT, the Vmax values of [3H]Dopamine uptake were increased by 96% in Y88F/H547A but decreased by 97% in Y88F/K92M/H547A. [3H]WIN35,428 binding sites were not altered in Y88F/H547A but decreased in Y88F/K92M/H547A. Y88F/H547A mutant attenuated Tat-induced inhibition of dopamine uptake observed in wild-type hDAT. Y88F/H547A displayed an attenuation of zinc-augmented [3H]WIN35,428 binding, increased basal dopamine efflux, and reduced amphetamine-induced dopamine efflux, indicating this mutant alters transporter conformational transitions. These findings further demonstrate that both tyrosine88 and histidine547 on hDAT play a key role in stabilizing basal dopamine transport and Tat-DAT integration. This study provides mechanistic insights into developing small molecules to block multiple sites in DAT for Tat binding.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Infecções por HIV/metabolismo , HIV-1 , Mutação Puntual/genética , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Complexo AIDS Demência/metabolismo , Dopamina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , HIV-1/metabolismo , Humanos
14.
Biomed Opt Express ; 9(5): 2142-2153, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29760976

RESUMO

Complete removal of a glioblastoma multiforme (GBM), a highly malignant brain tumor, is challenging due to its infiltrative characteristics. Therefore, utilizing imaging agents such as fluorophores to increase the contrast between GBM and normal cells can help neurosurgeons to locate residual cancer cells during image guided surgery. In this work, Raman tag based labeling and imaging for GBM cells in vitro is described and evaluated. The cell membrane of a GBM adsorbs a substantial amount of functionalized Raman tags through overexpression of the epidermal growth factor receptor (EGFR) and "broadcasts" stronger pre-defined Raman signals than normal cells. The average ratio between Raman signals from a GBM cell and autofluorescence from a normal cell can be up to 15. In addition, the intensity of these images is stable under laser illuminations without suffering from the severe photo-bleaching that usually occurs in fluorescent imaging. Our results show that labeling and imaging GBM cells via robust Raman tags is a viable alternative method to distinguish them from normal cells. This Raman tag based method can be used solely or integrated into an existing fluorescence system to improve the identification of infiltrative glial tumor cells around the boundary, which will further reduce GBM recurrence. In addition, it can also be applied/extended to other types of cancer to improve the effectiveness of image guided surgery.

15.
Opt Express ; 25(20): 24767-24779, 2017 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-29041422

RESUMO

Near-field and far-field optical properties of plasmonic materials can be tailored by coupling the existing structures. However, fabricating 3D coupled structures in the solution by molecular linkers may suffer from low yield, low stability (particle aggregates), long reaction time, complex surface modification or multiple purification steps. In this report, stable 3D plasmonic core-satellite assemblies (CSA) with a ~1 nm interior gap accompanied by high field enhancement (|E/Einc|>200) are formed in a few seconds through a single polyelectrolyte linker layer. In addition, by covalently binding different reporter molecules and core particles, three distinct RamSSan tags based on this CSA backbone are demonstrated and compared with conventional fluorophores in terms of stability. This general assembly method can be applied to any type of colloidal particles carrying stable surface charge, even non-plasmonic nanoparticles. It will facilitate the development of various robust Raman tags for multiplexed biomedical imaging/sensing by efficiently combining constituent particles of differing size/shape/composition. The CSA backbone with an embedded high field not only makes the brightness of Raman tags more comparable to the fluorophores and can also be utilized in the platform of molecule-light quantum strong coupling.

16.
Sci Rep ; 7(1): 3694, 2017 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-28623359

RESUMO

Dopamine transporter (DAT) is the target of cocaine and HIV-1 transactivator of transcription (Tat) protein. Identifying allosteric modulatory molecules with potential attenuation of cocaine and Tat binding to DAT are of great scientific and clinical interest. We demonstrated that tyrosine 470 and 88 act as functional recognition residues in human DAT (hDAT) for Tat-induced inhibition of DA transport and transporter conformational transitions. Here we investigated the allosteric modulatory effects of two allosteric ligands, SRI-20041 and SRI-30827 on cocaine binding on wild type (WT) hDAT, Y470 H and Y88 F mutants. Effect of SRI-30827 on Tat-induced inhibition of [3H]WIN35,428 binding was also determined. Compared to a competitive DAT inhibitor indatraline, both SRI-compounds displayed a similar decrease (30%) in IC50 for inhibition of [3H]DA uptake by cocaine in WT hDAT. The addition of SRI-20041 or SRI-30827 following cocaine slowed the dissociation rate of [3H]WIN35,428 binding in WT hDAT relative to cocaine alone. Moreover, Y470H and Y88F hDAT potentiate the inhibitory effect of cocaine on DA uptake and attenuate the effects of SRI-compounds on cocaine-mediated dissociation rate. SRI-30827 attenuated Tat-induced inhibition of [3H]WIN35,428 binding. These observations demonstrate that tyrosine 470 and 88 are critical for allosteric modulatory effects of SRI-compounds on the interaction of cocaine with hDAT.


Assuntos
Cocaína/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Inibidores da Captação de Dopamina/farmacologia , Infecções por HIV/metabolismo , Infecções por HIV/virologia , HIV-1 , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Regulação Alostérica , Análise de Variância , Animais , Linhagem Celular , Cocaína/farmacologia , Proteínas da Membrana Plasmática de Transporte de Dopamina/antagonistas & inibidores , Proteínas da Membrana Plasmática de Transporte de Dopamina/química , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Inibidores da Captação de Dopamina/química , Infecções por HIV/genética , Humanos , Ligantes , Mutação , Ligação Proteica , Ratos
17.
Sci Rep ; 6: 39048, 2016 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-27966610

RESUMO

Abnormal dopaminergic transmission has been implicated as a risk determinant of HIV-1-associated neurocognitive disorders. HIV-1 Tat protein increases synaptic dopamine (DA) levels by directly inhibiting DA transporter (DAT) activity, ultimately leading to dopaminergic neuron damage. Through integrated computational modeling prediction and experimental validation, we identified that histidine547 on human DAT (hDAT) is critical for regulation of basal DA uptake and Tat-induced inhibition of DA transport. Compared to wild type hDAT (WT hDAT), mutation of histidine547 (H547A) displayed a 196% increase in DA uptake. Other substitutions of histidine547 showed that DA uptake was not altered in H547R but decreased by 99% in H547P and 60% in H547D, respectively. These mutants did not alter DAT surface expression or surface DAT binding sites. H547 mutants attenuated Tat-induced inhibition of DA transport observed in WT hDAT. H547A displays a differential sensitivity to PMA- or BIM-induced activation or inhibition of DAT function relative to WT hDAT, indicating a change in basal PKC activity in H547A. These findings demonstrate that histidine547 on hDAT plays a crucial role in stabilizing basal DA transport and Tat-DAT interaction. This study provides mechanistic insights into identifying targets on DAT for Tat binding and improving DAT-mediated dysfunction of DA transmission.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Dopamina/química , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , HIV-1/metabolismo , Histidina/genética , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Substituição de Aminoácidos , Animais , Sítios de Ligação , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Regulação Viral da Expressão Gênica , Histidina/metabolismo , Humanos , Cinética , Modelos Moleculares , Células PC12 , Ligação Proteica , Conformação Proteica , Ratos
18.
Psychopharmacology (Berl) ; 233(19-20): 3527-36, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27553823

RESUMO

Previous studies have shown sex different patterns in behavioral responses to cocaine. Here, we used between-subject experiment design to study whether sex differences exist in the development of behavioral sensitization and tolerance to repeated cocaine, as well as the role of protein kinase A (PKA) signaling cascade in this process. Ambulatory and rearing responses were recorded in male and female rats after 1 to 14 days of administration of saline or cocaine (15 mg/kg; ip). Correspondent PKA-associated signaling in the nucleus accumbens (NAc) and caudate-putamen (CPu) was measured at each time point. Our results showed that females exhibited higher cocaine-induced behavioral responses and developed behavioral sensitization and tolerance faster than males. Whereas females developed behavioral sensitization to cocaine after 2 days and tolerance after 14 days, male rats developed sensitization after 5 days. In addition, cocaine induced a sexual dimorphic pattern in the progression of neuronal adaptations on the PKA cascade signaling in region (NAc vs. CPu) and time (days of cocaine administration)-dependent manners. In general, more PKA signaling cascade changes were found in the NAc of males on day 5 and in the CPu of females with repeated cocaine injection. In addition, in females, behavioral activities positively correlated with FosB levels in the NAc and CPu and negatively correlated with Cdk5 and p35 in the CPu, while no correlation was observed in males. Our studies suggest that repeated cocaine administration induced different patterns of behavioral and molecular responses in the PKA cascade in male and female rats.


Assuntos
Comportamento Animal/efeitos dos fármacos , Núcleo Caudado/efeitos dos fármacos , Cocaína/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/efeitos dos fármacos , Inibidores da Captação de Dopamina/farmacologia , Locomoção/efeitos dos fármacos , Núcleo Accumbens/efeitos dos fármacos , Putamen/efeitos dos fármacos , Animais , Núcleo Caudado/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Quinase 5 Dependente de Ciclina/efeitos dos fármacos , Quinase 5 Dependente de Ciclina/metabolismo , Tolerância a Medicamentos , Feminino , Masculino , Atividade Motora/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Fosfotransferases/efeitos dos fármacos , Fosfotransferases/metabolismo , Proteínas Proto-Oncogênicas c-fos/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Putamen/metabolismo , Ratos , Fatores Sexuais , Transdução de Sinais/efeitos dos fármacos
19.
Sci Rep ; 6: 27314, 2016 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-27250920

RESUMO

HIV-1 Tat plays an important role in HIV-associated neurocognitive disorders (HAND) by disrupting neurotransmission including dopamine uptake by human dopamine transporter (hDAT). Previous studies have demonstrated that HIV-1 Tat directly binds to hDAT and some amino-acid mutations that attenuate the hDAT-Tat binding also significantly decreased dopamine uptake activity of hDAT. This combined computational-experimental study demonstrates that histidine-547 (H547) of hDAT plays a crucial role in the hDAT-Tat binding and dopamine uptake by hDAT, and that the H547A mutation can not only considerably attenuate Tat-induced inhibition of dopamine uptake, but also significantly increase the Vmax of hDAT for dopamine uptake. The finding of such an unusual hDAT mutant capable of both increasing the Vmax of hDAT for dopamine uptake and disrupting the hDAT-Tat binding may provide an exciting knowledge basis for development of novel concepts for therapeutic treatment of the HAND.


Assuntos
Dopaminérgicos/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Histidina/metabolismo , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Substituição de Aminoácidos , Transporte Biológico , Linhagem Celular Tumoral , Proteínas da Membrana Plasmática de Transporte de Dopamina/química , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Humanos , Simulação de Dinâmica Molecular , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Ligação Proteica , Conformação Proteica
20.
Prog Mol Biol Transl Sci ; 137: 1-40, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26809997

RESUMO

Addiction to psychostimulants has been considered as a chronic psychiatric disorder characterized by craving and compulsive drug seeking and use. Over the past two decades, accumulating evidence has demonstrated that repeated drug exposure causes long-lasting neurochemical and cellular changes that result in enduring neuroadaptation in brain circuitry and underlie compulsive drug consumption and relapse. Through intercellular signaling cascades, drugs of abuse induce remodeling in the rewarding circuitry that contributes to the neuroplasticity of learning and memory associated with addiction. Here, we review the role of the extracellular signal-regulated kinase (ERK), a member of the mitogen-activated protein kinase, and its related intracellular signaling pathways in drug-induced neuroadaptive changes that are associated with drug-mediated psychomotor activity, rewarding properties and relapse of drug seeking behaviors. We also discuss the neurobiological and behavioral effects of pharmacological and genetic interferences with ERK-associated molecular cascades in response to abused substances. Understanding the dynamic modulation of ERK signaling in response to drugs may provide novel molecular targets for therapeutic strategies to drug addiction.


Assuntos
Comportamento , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Transdução de Sinais , Transtornos Relacionados ao Uso de Substâncias/genética , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...